Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(6): 3001-3017, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-34522950

RESUMO

The DNAs of bacterial viruses are known to contain diverse, chemically complex modifications to thymidine that protect them from the endonuclease-based defenses of their cellular hosts, but whose biosynthetic origins are enigmatic. Up to half of thymidines in the Pseudomonas phage M6, the Salmonella phage ViI, and others, contain exotic chemical moieties synthesized through the post-replicative modification of 5-hydroxymethyluridine (5-hmdU). We have determined that these thymidine hypermodifications are derived from free amino acids enzymatically installed on 5-hmdU. These appended amino acids are further sculpted by various enzyme classes such as radical SAM isomerases, PLP-dependent decarboxylases, flavin-dependent lyases and acetyltransferases. The combinatorial permutations of thymidine hypermodification genes found in viral metagenomes from geographically widespread sources suggests an untapped reservoir of chemical diversity in DNA hypermodifications.


Assuntos
Bacteriófagos , Liases , Aminoácidos/metabolismo , Bacteriófagos/genética , DNA/metabolismo , Timidina/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34155108

RESUMO

TET/JBP (ten-eleven translocation/base J binding protein) enzymes are iron(II)- and 2-oxo-glutarate-dependent dioxygenases that are found in all kingdoms of life and oxidize 5-methylpyrimidines on the polynucleotide level. Despite their prevalence, few examples have been biochemically characterized. Among those studied are the metazoan TET enzymes that oxidize 5-methylcytosine in DNA to hydroxy, formyl, and carboxy forms and the euglenozoa JBP dioxygenases that oxidize thymine in the first step of base J biosynthesis. Both enzymes have roles in epigenetic regulation. It has been hypothesized that all TET/JBPs have their ancestral origins in bacteriophages, but only eukaryotic orthologs have been described. Here we demonstrate the 5mC-dioxygenase activity of several phage TETs encoded within viral metagenomes. The clustering of these TETs in a phylogenetic tree correlates with the sequence specificity of their genomically cooccurring cytosine C5-methyltransferases, which install the methyl groups upon which TETs operate. The phage TETs favor Gp5mC dinucleotides over the 5mCpG sites targeted by the eukaryotic TETs and are found within gene clusters specifying complex cytosine modifications that may be important for DNA packaging and evasion of host restriction.


Assuntos
5-Metilcitosina/metabolismo , Bacteriófagos/metabolismo , DNA/metabolismo , Sequência de Aminoácidos , Metilação de DNA , Dioxigenases , Hidroxilação , Metagenômica , Motivos de Nucleotídeos/genética , Oxirredução , Filogenia
3.
Proc Natl Acad Sci U S A ; 115(14): E3116-E3125, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29555775

RESUMO

Certain viruses of bacteria (bacteriophages) enzymatically hypermodify their DNA to protect their genetic material from host restriction endonuclease-mediated cleavage. Historically, it has been known that virion DNAs from the Delftia phage ΦW-14 and the Bacillus phage SP10 contain the hypermodified pyrimidines α-putrescinylthymidine and α-glutamylthymidine, respectively. These bases derive from the modification of 5-hydroxymethyl-2'-deoxyuridine (5-hmdU) in newly replicated phage DNA via a pyrophosphorylated intermediate. Like ΦW-14 and SP10, the Pseudomonas phage M6 and the Salmonella phage ViI encode kinase homologs predicted to phosphorylate 5-hmdU DNA but have uncharacterized nucleotide content [Iyer et al. (2013) Nucleic Acids Res 41:7635-7655]. We report here the discovery and characterization of two bases, 5-(2-aminoethoxy)methyluridine (5-NeOmdU) and 5-(2-aminoethyl)uridine (5-NedU), in the virion DNA of ViI and M6 phages, respectively. Furthermore, we show that recombinant expression of five gene products encoded by phage ViI is sufficient to reconstitute the formation of 5-NeOmdU in vitro. These findings point to an unexplored diversity of DNA modifications and the underlying biochemistry of their formation.


Assuntos
Bactérias/metabolismo , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/metabolismo , Bacteriófagos/genética , DNA Viral/biossíntese , Timidina/química , Uridina/química , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/metabolismo , Genoma Viral
4.
PLoS One ; 6(8): e23668, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21858199

RESUMO

Sulfolobus islandicus rod shaped virus 2 (SIRV2) infects the archaeon Sulfolobus islandicus at extreme temperature (70°C-80°C) and acidity (pH 3). SIRV2 encodes a Holliday junction resolving enzyme (SIRV2 Hjr) that has been proposed as a key enzyme in SIRV2 genome replication. The molecular mechanism for SIRV2 Hjr four-way junction cleavage bias, minimal requirements for four-way junction cleavage, and substrate specificity were determined. SIRV2 Hjr cleaves four-way DNA junctions with a preference for cleavage of exchange strand pairs, in contrast to host-derived resolving enzymes, suggesting fundamental differences in substrate recognition and cleavage among closely related Sulfolobus resolving enzymes. Unlike other viral resolving enzymes, such as T4 endonuclease VII or T7 endonuclease I, that cleave branched DNA replication intermediates, SIRV2 Hjr cleavage is specific to four-way DNA junctions and inactive on other branched DNA molecules. In addition, a specific interaction was detected between SIRV2 Hjr and the SIRV2 virion body coat protein (SIRV2gp26). Based on this observation, a model is proposed linking SIRV2 Hjr genome resolution to viral particle assembly.


Assuntos
Resolvases de Junção Holliday/metabolismo , Rudiviridae/enzimologia , Sulfolobus/virologia , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Biocatálise , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , DNA Cruciforme/química , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Eletroforese em Gel de Poliacrilamida , Resolvases de Junção Holliday/química , Resolvases de Junção Holliday/genética , Imunoprecipitação , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Rudiviridae/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Proteínas Virais/química , Proteínas Virais/genética
5.
Nucleic Acids Res ; 33(19): 6225-34, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16264086

RESUMO

A stable heterodimeric protein containing a single correctly folded catalytic domain (SCD) of T7 endonuclease I was produced by means of a trans-splicing intein system. As predicted by a model presented earlier, purified SCD protein acts a non-specific nicking endonuclease on normal linear DNA. The SCD retains some ability to recognize and cleave a deviated DNA double-helix near a nick or a strand-crossing site. Thus, we infer that the non-specific and nicked-site cleavage activities observed for the native T7 endonuclease I (as distinct from the resolution activity) are due to uncoordinated actions of the catalytic domains. The positively charged C-terminus of T7 Endo I is essential for the enzymatic activity of SCD, as it is for the native enzyme. We propose that the preference of the native enzyme for the resolution reaction is achieved by cooperativity in the binding of its two catalytic domains when presented with two of the arms across a four-way junction or cruciform structure.


Assuntos
Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Resolvases de Junção Holliday/química , Resolvases de Junção Holliday/metabolismo , Bacteriófago T7/enzimologia , Domínio Catalítico , DNA Cruciforme/metabolismo , Peptídeos/metabolismo , Especificidade por Substrato
6.
J Bacteriol ; 187(11): 3671-7, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15901689

RESUMO

Two genes in the Escherichia coli genome, ypdE and ypdF, have been cloned and expressed, and their products have been purified. YpdF is shown to be a metalloenzyme with Xaa-Pro aminopeptidase activity and limited methionine aminopeptidase activity. Genes homologous to ypdF are widely distributed in bacterial species. The unique feature in the sequences of the products of these genes is a conserved C-terminal domain and a variable N-terminal domain. Full or partial deletion of the N terminus in YpdF leads to the loss of enzymatic activity. The conserved C-terminal domain is homologous to that of the methionyl aminopeptidase (encoded by map) in E. coli. However, YpdF and Map differ in their preference for the amino acid next to the initial methionine in the peptide substrates. The implication of this difference is discussed. ypdE is the immediate downstream gene of ypdF, and its start codon overlaps with the stop codon of ypdF by 1 base. YpdE is shown to be a metalloaminopeptidase and has a broad exoaminopeptidase activity.


Assuntos
Aminopeptidases/genética , Proteínas de Escherichia coli/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Família Multigênica/genética , Sequência de Aminoácidos , Aminopeptidases/química , Aminopeptidases/metabolismo , Cátions Bivalentes/metabolismo , Códon de Iniciação , Sequência Conservada , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Metais/metabolismo , Metionil Aminopeptidases , Dados de Sequência Molecular , Mutagênese , Estrutura Terciária de Proteína , Especificidade por Substrato
7.
Biochemistry ; 43(14): 4313-22, 2004 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-15065875

RESUMO

Phage-encoded resolvase T7 endonuclease I is a structure-specific endonuclease. The enzyme acts on a broad spectrum of substrates with a variety of DNA structures. The enzyme is a dimer with two separated catalytic domains connected by an elongated beta-sheet bridge. The activities of enzymes with mutations in the beta-bridge segment were studied. Mutations that did not affect catalytic domain folding and function but did alter the relative positions of these domains retained catalytic activity but with altered specificity and metal ion dependence. Our results suggest that the enzyme recognizes its substrates by DNA conformation exclusion and offer a simple explanation for the broad substrate specificity of phage resolvase.


Assuntos
Bacteriófago T7/enzimologia , Bacteriófago T7/genética , Domínio Catalítico/genética , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Magnésio/química , Manganês/química , Mutagênese Sítio-Dirigida , Pareamento Incorreto de Bases/genética , Sítios de Ligação/genética , DNA Viral/genética , DNA Viral/metabolismo , Desoxirribonuclease I/biossíntese , Ativação Enzimática/genética , Regulação Viral da Expressão Gênica , Hidrólise , Modelos Químicos , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Especificidade por Substrato/genética
8.
Structure ; 11(8): 997-1003, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12906830

RESUMO

Glycosylasparaginase uses an autoproteolytic processing mechanism, through an N-O acyl shift, to generate a mature/active enzyme from a single-chain precursor. Structures of glycosylasparaginase precursors in complex with a glycine inhibitor have revealed the backbone in the immediate vicinity of the scissile peptide bond to be in a distorted trans conformation, which is believed to be the driving force for the N-O acyl shift to break the peptide bond. Here we report the effects of point mutation D151N. In addition to the loss of the base essential in autoproteolysis, this mutation also eradicates the backbone distortion near the scissile peptide bond. Binding of the glycine inhibitor to the autoproteolytic site of the D151N mutant does not restore the backbone distortion. Therefore, Asp151 plays a dual role, acting as the general base to activate the nucleophile and holding the distorted trans conformation that is critical for initiating an N-O acyl shift.


Assuntos
Ácido Aspártico/metabolismo , Aspartilglucosilaminase/química , Aspartilglucosilaminase/metabolismo , Aspartilglucosilaminase/genética , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Glicina/metabolismo , Cinética , Modelos Moleculares , Estrutura Molecular , Mutagênese Sítio-Dirigida , Mutação Puntual , Ligação Proteica , Conformação Proteica , Análise Espectral Raman , Relação Estrutura-Atividade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...